
Reference: Documents referenced for this bulletin are the current adopted editions of the following: San Francisco Fire Code (SFFC), including Section 604.1.1; San Francisco Building Code (SFBC); San Francisco Mechanical Code (SFMC); NFPA 13, Installation of Sprinkler Systems; NFPA 37, Stationary Combustion Engines and Gas Turbines; NFPA 30, Flammable and Combustible Liquids Code; California Electrical Code; San Francisco Electrical Code; NFPA 110, Emergency and Standby Power Systems; NFPA 704, Standard System for the Identification of the Hazard of Materials for Emergency response.

Purpose:
This checklist has been developed primarily for fuel installations in buildings. Outdoor fuel installations will require further information. This checklist is designed to assist designers, installers, plan reviewers, and field inspectors. This checklist shall be prepared by the design professional and shall be stamped and wet-signed.

This document is not all-inclusive of all requirements for fuel installations, and it is the responsibility of the designer to research the applicable codes. In addition to these requirements, the applicant is advised to contact the San Francisco Department of Public Health at (415) 252-3900 for their requirements as the designated Hazardous Materials Unified Program Agency.

Definitions:
Emergency Power Supply System (EPSS): A complete functioning EPS system coupled to a system of conductors, disconnecting means and over-current protective devices, transfer switches, and all control, supervisory, and support devices up to and including the load terminals of the transfer equipment needed for the system to operate as a safe and reliable source of electric power.

Level 1-Includes the following: emergency lighting, exit signs, fire alarm, sprinkler alarm, and detection systems, fire pumps where backup power is required, controls for smoke control equipment required by the Building Code, elevator car lighting. Includes all loads classified as Emergency Systems by the NEC.

Level 2-Includes elevators requiring emergency power, and could include heating and refrigeration systems, communications systems, ventilation and smoke removal systems (except controls), sewerage disposal, lighting, and industrial processes that, when stopped due to any interruption of the primary electrical supply, could create hazards or hamper rescue or fire-fighting operations. Includes all loads classified as Legally Required Standby by the NEC.

Tank: A vessel containing more than 60 gallons.

Listing Requirement: The stationary emergency and standby generator systems are required to be listed in accordance with UL 2200, (Reference CFC 604.1.1).

NOTE: The following AB 2.07 “Checklist” (including the AB 2.07 Cover Page) shall be printed on the title sheets (or as near the front of the plan set as practicable) of every plan submitted with building permit applications for diesel generators, diesel fire pumps, tanks, and/or piping, and to be completed by the design engineer for the submittal. Be sure to answer ALL parts of the following checklist where applicable. If appropriate enter “N/A” (“Not Applicable”).

Circle all bullet point numbers that are applicable & check ✓ ALL of the information (where provided) that is relevant to the project and/or supply specific information as required in the blank sections. Where noted, provide the appropriate Discipline/Title taking responsibility for the answers in this checklist:

Legend for Discipline/Title: ‘ME’=Mechanical Engineer; “A”=Architect; “FPE”=Fire Protection Engineer; “E”=Electrical Engineer

CHECKLIST

Diesel Generators, Diesel Fire Pumps, & Fuel Tanks Serving Generators and/or Fire Pumps

STREET ADDRESS OF PROJECT BUILDING: ___

DBI Permit Application No. __

San Francisco Fire Department
Bureau of Fire Prevention & Investigation
1 of 14 | Page
1. Number of diesel generators under this permit application.

2. Number of diesel fire pumps under this application.

3. Number of diesel fuel storage tanks under this application.

4. Location(s) of generators or fire pumps under this application:
 - In building, floor____
 - On roof
 - Detached structure
 - Outdoors:
 - Minimum distance from adjacent buildings: ____________________________
 - Minimum distance to adjacent property lines: ____________________________

5. Type of diesel fuel tank
 - Aboveground (Atmospheric)
 - Underground (Atmospheric)
 - Fire Resistant Aboveground Tank (Tank, not building components) (Atmospheric)
 - Underground Vault
 - Secondary Containment Aboveground Tank Indoors _____ Outdoors _____
 - UL Listed UL 142 Double Wall Tank
 - UL Listed UL 2085 Protected Aboveground Tank
 - Other Specialty Tank, Please specify ____________________________

6. Location(s) of diesel fuel storage tanks (include day tanks) under this application.
 - In building, floor____ Number of gallons____
 - On roof. Number of gallons____
 - Outdoors. Number of gallons____

7. Generator or Fire Pump will be located in a combustible-free room or enclosure?
 - YES or NO or N/A [DISCIPLINE/TITLE]

8. Air Filter is of the type that will not burn freely when exposed to fire?
 - YES or NO or N/A [DISCIPLINE/TITLE]

9. Explain how sufficient air for combustion, proper cooling, and adequate ventilation is provided for generator or fire pump?
 - __

10. Generator or Fire Pump make, model number, rated capacity, & listing agency ____________________________

11. Separate Fire Department permit is required (amount of diesel in building exceeds 25 gallons, or 60 gallons outside.) (Reference: SFFC Section 105.6.16, number 3):
12. The aggregate total volume of diesel in the building after this installation will be __________ gallons. (Aggregate total in building affects room design for fire rating. NFPA 37, 6.3.2.2, 6.3.2.3)

13. Liquid storage room is properly placarded in accordance with NFPA 704 and when located in a high-rise building, hazardous material inventory and locations are prominently posted on a permanent placard in the fire control room, SFFC, Sections 5003.5, 5003.6, 5703.5, and 5704.2.3.

14. Generator serves which type of loads as defined by NFPA 110 (See definitions above). Check all applicable boxes:
 _____Level 1 or Emergency Systems
 _____Level 2 or Legally Required Standby
 _____Optional-Base Building loads
 _____Optional-Tenant Loads

15. If installation serves optional loads, is the intent of the installation to keep the business up and running during a power failure (building occupied)?

16. GENERATOR / FIRE PUMP (circle one) #1 consumes _______ gallons of diesel per hour under full load
 GENERATOR / FIRE PUMP (circle one) #2 consumes _______ gallons of diesel per hour under full load
 GENERATOR / FIRE PUMP (circle one) #3 consumes _______ gallons of diesel per hour under full load

17. Starting kVA of the generator is ______________. If more than one generator, attach info

18. Running kVA of the generator is ___________. If more than one generator, attach info

19. Provide a list (minimum 11 x 17-inch sheet) of all equipment served by the generator and "demand" calculations Attached / Scanned (circle one) onto plan set.

ENGINES LOCATED IN STRUCTURES
(Answer 20-21) (If installing an engine inside a structure.)

20. What is the fire rating of the walls and opening protection in the room where the engine is located? Note, minimum one-hour fire barrier separation shall be provided for engines installed in a building. The system shall be designed in such a way that required opening protection is provided without choking off vital combustion air and ventilation.) Reference: SFBC Section 432
 _____ 1-hour
 _____ 2-hour
 _____ 3-hour
 OTHER___________________________________

21. Fully Sprinklered building, per NFPA 13?
 _____YES or _____NO or _____N/A [_____DISCIPLINE/TITLE]
If no, interior openings are not permitted between the Engine Room and other portions of the building, except Group I occupancies. Reference SFBC, Section 432.2.2.1

ENGINES LOCEATED ON ROOFS
(Answer 22-23 if you are installing an engine on a roof)

22. Engines and their weatherproof housings, if provided, that are installed on roof structures shall be located at least (5ft) for structures having combustible walls and wall openings, NFPA 37, 4.1.3.1
A minimum separation shall not be required where all of the following conditions exist:

- The adjacent wall has a rating of at least 1 hour.
- The weatherproof enclosure is constructed on noncombustible material, and it has been demonstrated that a fire within the enclosure will not ignite combustible materials outside the enclosure.

Note: Corrosion protection is required for fuel tanks per SFFC, Section 5704.2.7.9

23. Where engine or skid mounted assembly containing an engine is mounted on a roof, the surface beneath the engine and beyond the engine, and any containment dike is noncombustible to a minimum distance of 12 inches
Reference: NFPA 37, Section 1.3.3

ENGINES LOCATED OUTDOORS
(Answer 24 if you are installing an engine outdoors)

24. Engines and their weatherproof housings are located at least 5 ft. from openings in walls and at least 5 ft. from structures having combustible walls. Reference: NFPA 37, Section 4.1.4

- The adjacent wall has a rating of at least 1 hour.
- The weatherproof enclosure is constructed on noncombustible material, and it has been demonstrated that a fire within the enclosure will not ignite combustible materials outside the enclosure.

Note: Corrosion protection is required for fuel tanks per SFFC, Section 5704.2.7.

ENGINES HANDLING HAZARDOUS MATERIALS (Other than their own fuel supply)
(Answer 25-28 when applicable)

25. Engine is suitably isolated from areas not having a similar hazard. Reference: NFPA 37, Section 4.4.1

26. Provisions for the venting of an explosion with minimal structural damage is provided. Reference: NFPA 37, Section 4.4.2.

27. Rooms containing engines located within structures have interior walls, floors, and ceilings of at least 2-hour fire resistance rating. Reference: NFPA 37, Section 4.4.2

San Francisco Fire Department
Bureau of Fire Prevention & Investigation
4 of 14 | Page
28. Rooms containing engines are adequately ventilated from a non-hazardous area. Reference: NFPA 37, Section 4.4.2
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

 ENGINE WIRING
 (Answer 29-31 for all engine installations.)

 ______29-31 not applicable

 29. Wiring is in accordance with NFPA 70 and NFPA 37, Section 4.5
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

 30. Are the Electrical circuits designed to be fail-safe, i.e. Engine shuts down automatically in case of control wire break, disconnect, or cutting. Reference: NFPA 37, Section 4.5.3.4
 ______YES, circuits are fail safe or ______NO, circuits are not fail safe or ______N/A

 31. Batteries, wiring, and electrical protective devices are protected against arcing and accidental shorting. Reference: NFPA 37, Section 4.5.
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

 ENGINE EXHAUST
 (Answer 32-33 for ALL engine installations)

 ______32-33 not applicable

 32. Engine exhaust termination location is _________________________________.
 *(Required to terminate outside structure at a point where hot gases, sparks, or products of combustion will be discharged harmlessly and guarded to prevent personnel burns where necessary). Reference: NFPA 37, Section 8.2.3.

 33. Anticipated engine exhaust temperature___________. Reference NFPA 37, Section 8.3 and 8.4 for clearance requirements.

 ENGINE REQUIREMENTS
 (Answer 34-38 for all engine installations)

 ______34-38 not applicable

 34. Is Engine provided with an automatic engine speed control, as required? Reference: NFPA 37, Section 9.1
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

 35. Reciprocating engines that are 10 Horsepower or more are provided with ALL of the following:
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]
 ▪ Device for high jacket water temperature or, high cylinder temperature
 ▪ Device for low lubricating oil pressure or, in the case of a splash lubricated engine, for low oil level
 ▪ Provisions for shutting down the engine at the engine and a remote location
 ▪ An automatic engine shutdown device for engine over-speed
 ▪ An automatic engine shutdown device for high-lubricating oil temperature
 ▪ Provisions for shutting down, from a remote location, lubricating oil pumps not driven by the engine.
 Reference: NFPA 37, Section 9.2.1

 36. Combustion gas turbine engines are equipped with the item in 34 above, and at least ALL of the following
additional features:

- An automatic main speed control and over speed shutdown control
- A backup over speed shutdown control that is independent from the main control specified above
- An automatic engine shutdown device for low lubricating oil pressure
- An automatic engine shutdown device for high exhaust temperatures
- Provisions for shutting down the engine from a remote location
- Provisions for shutting down, from a remote location, lubricating oil pumps not directly driven by the engine
- An automatic shutdown device for high exhaust temperatures
- A means of automatically shutting off the fuel supply in the event of a flameout

Reference: NFPA 37, Section 9.3

37. One set of operating and maintenance procedures will be located where readily accessible to personnel operating or maintaining equipment. Reference: NFPA 37, Section 10.1

- YES or NO or N/A [DISCIPLINE/TITLE]

38. Emergency shutdown procedures will be conspicuously posted near the engine indicating the location of the fuel shutoff valve(s). Reference: 2015 Edition of NFPA 37, Section 10.2

- YES or NO or N/A [DISCIPLINE/TITLE]

FUEL SUPPLY/FUEL TANKS

(Answer 39-84 for all fuel tank installations)

- 39-84 not applicable

39. Fuel Tank is listed. Make, model, listing agency:

__

40. Tank is constructed of:

- Combustible Materials: as allowed per NFPA 30, Section 21.4.1.2 (1 and 2)

- Noncombustible Materials

41. Engine-mounted tanks securely mounted on the engine assembly and protected against vibration, physical damage, engine heat, and the heat of exhaust piping.

Reference: NFPA 37, Section 6.3.1

- YES or NO or N/A [DISCIPLINE/TITLE]

42. Indoor and roof fuel tanks are securely mounted on substantial noncombustible supports.

Reference: NFPA 37, Sections 6.3.2.1, and 6.3.4.

- YES or NO or N/A [DISCIPLINE/TITLE]

43. Fully Sprinklered Building per NFPA 13 (affects exempt amounts). Reference: CBC, Table 307.1(1), and SFFC Section 5003.1.1 and Table 5003.1.1(1)

- YES or NO or N/A [DISCIPLINE/TITLE]

44. Tank is located in an exhausted enclosure (affects exempt amounts). Reference: CBC, Table 307.1(1), and SFFC Section 5003.1.1 and Table 5003.1.1(1)
45. Room where tank is stored is sprinklered to Extra Hazard Group II hazard classification. Reference: NFPA 13, Section 5.4.2
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

46. Tank has a nominal capacity of 480 gallons or less, building is fully sprinklered in accordance with NFPA 13, and tank is located in an exhausted enclosure. Reference: SFBC, Table 307.1(1), & SFFC Section 5003.1.1 and Table 5003.1.1(1)
 ______Yes (If yes, do not answer questions 48-53.) or ______NO or ______N/A [______DISCIPLINE/TITLE]

47. Tank has a nominal capacity of more than 480 gallons and is located in a room with the proper occupancy separation for H-3 occupancies (SFBC, Table 508.4).
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

 You must also answer questions 48-54 (most restrictive section applies)

48. Fire rating provided is _____________ for separation from a _____________ occupancy. Building is fully sprinklered per NFPA 13, and tank is located in an exhausted enclosure. Interior wall and ceiling finish per SFFC, Table 803.3. Shelving, racks, and wainscoting in such rooms shall be non-combustible material compatible with the hazardous material stored. Reference: SFFC 5003.8.5.1 and 5003.9.9
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

49. Room where diesel tank is located is less than 1000 sq. ft. in area, not required to have an exterior wall. Reference: SFBC, Section 415.3, exception 2
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

50. Room where diesel tank is located is as required by NFPA 30, Section 9.9, but not less than that required by SFBC, Table 508.4 Reference: NFPA 30 Section 9.9
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

51. Room where diesel tank is located is greater than 1000 sq. ft. in area, 25% of the perimeter wall shall be an exterior wall. Two exits are required; with one door directly to the exterior, that also serves as Fire Department access. Reference: SFBC, Section 1015.1 and Table 1015.1
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

52. Fuel tank exceeds 660 gallons; the tank must be in a room by itself. Reference: NFPA 37, Section 6.3.2.2
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

53. Amount of fuel connected to any one engine exceeds 660 gallons, or the aggregate capacities of all fuel tanks in a structure exceed 1320 gallons. Provide a technical report, justifying design in regard to: recognized engineering practices, with suitable fire detection, fire suppression, and containment means, to prevent the spread of fire beyond the room of origin. Report shall be prepared without charge to the City- Approval of storage amounts in this category requires specific approval of the Fire Marshal. Reference: NFPA 37, Section 6.3.2.2 and 6.3.2.3, SFFC, 5704.2.10
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]
54. Spill control / Leakage control in accordance with SFFC, Section 5004.2 is provided. Reference: SFFC, Sections 5704.2.10; and SFBC, Section 415.6.2.5
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]
 Method used: __

55. Indoor secondary containment in accordance with SFFC Section 5004.2.2 is provided. Volume of largest vessel + 20 minutes sprinkler flow for room or minimum sprinkler design area, whichever is smallest. A monitoring method to detect hazardous materials in the secondary containment system is required (leak detection), and shall be equipped with a distinct visual or audible alarm to an approved area and signage per SFBC, Section 415.6.2.6. Reference: SFFC Sections 5004.2.2.1, 5004.2.2.3, 5004.2.2.4, and 5004.2.2.5; and CBC Section 415.6.2
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]
 Method used: Include volume of secondary containment and justification (attach calculations).

56. Fuel Tank is filled via a closed piping system with remote fill. Required for all new installations of aboveground storage tanks in buildings, unless specifically approved by the Fire Marshal. Reference: SFFC, Sections 5703.6 & 5704.2.7.5.6
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

57. Remote fill inlet is located outside of building, free from sources of ignition and a minimum of 5 ft. away from building openings or of lines of property that can be built on. Opening is provided with a tamper-proof, liquid-tight cap which is closed when not in use and is properly identified. Reference: SFFC, Sections 5704.2.7.5.2 and 5704.2.7.5.6
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

58. Remote fill inlet is provided with a permanent spill containment basin to prevent the inflow of hazardous substances into the environment. Reference: SFFC, Section 5704.2.9.7.8
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

59. An audible and visual alarm for ALL leak sensors; High and High High fuel levels at the fill port.
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

60. Service personnel (driver) has visual sight of the fuel port, alarm panel and fuel truck when fueling.
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

61. Overfill protection is provided in accordance with SFFC, Sections 5704.2.7.5.8, 5704.2.9.7.6, 5704.2.9.7.6.1, and 5704.2.9.7.6.2
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

62. All tank openings are in accordance with SFBC, Section 415.6.2.10; CFC, Section 5703.6.7; and NFPA 30, Section 24.14
63. Metallic fill pipes are designed to minimize the generation of static electricity by terminating the pipe within 6 inches of the bottom of the tank, and will be installed to avoid excessive vibration. SFFC, Section 5704.2.7.5.5

64. Piping systems are supported and protected against physical damage and excessive stresses in accordance with MSS SP-69, Pipe Hangers & Supports–Selection and Application. Flexible connectors are provided to protect the piping system against damage caused by settlement, vibration, expansion, contraction, or corrosion. Reference: NFPA 37, Section 6.8.2

Flexible connector details and specifications are included with this submittal. Make and model number: __________

65. Fuel piping supports are protected against exposure to fire by one or more of the following:

- Draining liquid away from piping system at a minimum slope of not less than 1 percent, or
- Providing protection with a fire-resistive rating of not less than 2 hours, or
- Other approved methods. Please specify:

Reference: NFPA 30, Section 27.6.2; NFPA 37, 6.8; and SFFC, Sections 5703.6.2 and 5703.6.8

66. All equipment, tanks, piping, pumps, etc. listed for their respective application and complete equipment list with submittal data submitted with the building permit plans.

67. Tank is provided with vents for normal venting in accordance with SFFC Section 5704.2.7.3 (If tank is double-wall construction, interstitial space shall be vented also).

68. Size of tank normal vent piping is __________, determined by (circle one) NFPA 30 Section 21.4.3 API Standard 2000. Size of emergency vent piping is __________, determined by NFPA 30, Section 22.7. Provide manufacturers UL listing for tank vent sizes. Attach all calculations to verify vent calculations.

69. Location of vent pipe outlet(s) for tank: ___

Vents shall be vented not less than 12 ft. above the adjacent ground level, shall be vented upward or horizontally away from closely adjacent walls, so that vapors will not be trapped by eaves or other obstructions, and shall be at least 5 ft. from building openings or property lines of properties that can be built on. Reference: SFFC, Section 5704.2.7.3.3

70. Check ☑ the appropriate responses for the tank being installed as applicable (check all that apply):

(a) **UL 142** Tank is provided with emergency venting in accordance with SFFC Section 5704.2.7.4 and NFPA 30
Section 22.7

______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

(b) **UL 2085**-Secondary Contained Protected Tank with emergency vents allowed to discharge inside the building in accordance with SFFC 5704.2.7.4 exception no.2 and NFPA 30, Section 22.7 and complies with all requirements of UL 2085 and the following:

______Shall not discharge into a lesser hazard area;
______Shall not discharge into a normally occupied space;
______The emergency vent cap shall be equipped with a listed flame arrester;

______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

71. Room where tank is located is ventilated in accordance with SFFC, Sections 5004.3 and 5004.3.1

______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

72. Tank supports and connections are designed to resist damage as a result of seismic activity. Reference: SFFC, Sections 5003.2.8, and 5704.2.9.3; and NFPA 30, Section 22.5.

______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

73. Piping, valves, tanks, or fittings are subject to vehicular damage. (Guard posts or other approved means of protection shall be installed) Reference: SFFC, Sections 5003.9.3 and 5704.2.9.7.5

______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

74. Fuel supply system is provided with adequate alarms, float-controlled valves, or mechanical or remote-reading-level gauges or protected sight glass gauges to aid personnel in properly operating the fuel system. Reference: NFPA 37, Section 6.5.2 (Note: all openings are restricted to the top of the tank).

______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

75. All piping is double-walled, meets the requirements SFFC Section 5003.2.2, 5004.2.2.5, 5703.6 and 5704.2.8.11 and is provided with a leak-detection system. Provide leak detection alarm SFBC Section 415.6.2, 414.7 and SFFC, Section 5004.2.2.5, with supervision as required by SFBC Section 414.7.3, transmitting a trouble signal to a central station. The leak detection shall also provide Emergency Alarm per SFBC Section 414.7.1 and SFFC Section 5004.9. All piping is “double wall” unless within a containment area.

______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

76. The Fire Alarm panel has the 4 points listed below; that call to the remote monitoring station individually:

1. All leak sensors.
2. Generator running.
3. Low fuel.
4. Trouble.

______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

77. Above ground fuel piping schedule 40 welded steel for the primary fuel piping and schedule 10 welded steel for the secondary fuel piping.

______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

78. Fuel line for underground fuel piping listed by an approved testing company (for proposed use).

______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

79. Listed underground pipe transitions to steel outside the building in a transition box in the ground.

______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

80. Stationary-powered fuel pumps supplying fuel tanks have stop controls sensitive to a tank’s high liquid level.
81. Fuel tanks supplied by pumps are provided with an overflow line, a high-level alarm, and a high-level automatic shut-off. Overflow piping complies with section. Reference: NFPA 37, Section 6.5.4

82. Clearance provided around tank is a minimum of 15 inches. Reference NFPA 37, Section 6.3.5.1.2

83. Pressure relief valves and relief piping are provided where the potential exists for over-pressurizing fuel system piping, and is routed without valves or traps to the source tank or collection system. Reference: NFPA 37, Section 6.5

84. Hydrostatic test will be performed in the presence of the Fire Inspector for all piping and underground tanks. Reference: SFFC, Sections 5703.6.3 and 5704.2.12

85. Locations housing required EPSS and Standby equipment will be provided with battery-powered emergency lighting. The charging system and the normal service room lighting shall be supplied from the load side of the transfer switch. Reference: NFPA 110, Section 7.3

86. Generators serving EPSS systems will have a remote panel, powered by the storage battery that complies with the NFPA 110, Section 5.6.5.2. Such panel will be located immediately outside of the EPSS service room and will include all status indicators as required as by NFPA 110, Table 5.6.5.2

87. EPS equipment is provided with a minimum of 36 inches clearance on all sides. Required when generator is used for required emergency loads. Reference: NFPA 110, Section 7.2.5

88. Installation is serving high-rise building emergency power systems.

89. Power Distribution/Riser Diagram has been reviewed and approved by the Electrical Inspection Division.

NOTE: Emergency and standby power status indicators are required in the Fire Command Center per SFFC, Section 911. Status indicators shall include but not be limited to: running, failure to start, controller off automatic, trouble (e.g., low oil, high temperature, over speed), fuel leak detection alarms (piping, tank room), and low fuel level alarms. Generator supervision devices, manual start and transfer features. See SFFD AB #3.01.
90. For generators serving EPSS, prime movers are provided with instruments and accessories as required by NFPA 110, Section 5.6.3
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]
91. Engines for EPSS are located in a separate room of minimum 2-hour fire-rated construction. Only EPSS equipment is permitted in room. Reference: NFPA 110, Section 7.2.1
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]
92. Electrical rooms for normal building power will be free of EPSS equipment. Reference: NFPA 110, Section 7.2.2
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]
93. Engines serving EPSS are provided with a remote manual stop station of a type to prevent inadvertent or unintentional operation station located immediately outside the generator room. Reference: NFPA 110, § 5.6.5.6
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]
94. At least two sets of instruction manuals in accordance with Section 8.2.1 of NFPA 110 will be provided to the building. One set will be located in a secure, convenient location near the equipment. The other set will be kept in a different secure location. Reference: NFPA 110, Sections 8.2.1 and 8.2.2
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]
95. For EPSS systems, a routine and operational testing program has been designed and a written record in accordance with 2016 Edition of NFPA 110, Section 8.3.3 is in place to begin immediately after acceptance, including transfer switch and battery requirements. Reference: NFPA 110, §§ 8.3.5 and 8.3.7
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]
96. Generators serving EPSS shall employ a program-timing device to exercise the EPSS as described in Chapter 8 of the NFPA 110. The transfer switches for Level 1 and Level 2 EPSS shall transfer the connected load to the EPS per NFPA 110, Sections 6.2.11 and 6.2.11.1
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]
97. All elements of the fuel delivery systems serving emergency generators and fire pumps for required emergency power are provided with a means of secondary power. Reference: NFPA 110, Section 7.9.9 and SFFD Interpretation.
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]
98. Fuel Tank is sized so that fuel is consumed within storage life (1-1/2 years), or provisions will be made to replace stale fuel with fresh fuel. Reference: NFPA 110, Section 7.9.1.
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]
99. Fuel tanks for EPSS are placed as close as practicable to the prime mover. Reference: 2016 Edition of NFPA 110, Section 7.9.2
 ______YES or ______NO or ______N/A [______DISCIPLINE/TITLE]

NOTE: Final approval of fire pumps requires completion of a field acceptance test conducted in accordance with NFPA 20, Section 14.2.1. Pump test shall be attended by the pump manufacturer representative, engine manufacturer representative, transfer switch manufacturer representative (when supplied), installing contractor, and should be attended by the owner representative. The
SFFD District Fire Inspector shall be notified in advance of the time and place of the test, and shall be provided with the pump acceptance test data.

Final approval of required emergency generators requires completion of Installation Acceptance Testing in accordance with NFPA 110, Section 7.13. Person(s) responsible for testing the generator shall have experience and exhibit competence, or may be rejected at the time of the test. The SFFD District Fire Inspector and the DBI Electrical Inspector shall be notified in advance of the time and place of acceptance testing, and shall be provided with written testing data.

Prepared by (signature): ___________________ Mechanical Engineer-Ventilation
Firm Name: ________________________________
Address: __________________________________
Phone No.: ________________ Fax No.: __________

NOTE: If more than one discipline is assisting in the preparation of this checklist please provide ALL names and professional titles/stamps on the following page.

Prepared by (signature): ___________________ Mechanical Engineer-Plumbing
Firm Name: ________________________________
Address: __________________________________
Phone No.: ________________ Fax No.: __________

Prepared by (signature): ___________________ Fire Protection Engineer
Firm Name: ________________________________
Address: __________________________________
Phone No.: ________________ Fax No.: __________

Please include professional title and wet stamp here.